Prof. Matthieu Bloch
Tuesday September 19, 2023
A fixed-lenght \((n,M_n)\) code for a discrete memoryless source \(p_X\) consists of:
The rate of the code \(R\eqdef \frac{\log_2 M_n}{n}\) (bits/source symbol)
The average probability of error
\[\begin{align*} P_e^{(n)}(\calC) \eqdef \P{\widehat{X}^n\neq X^n} \eqdef \sum_{x^n\in\calX^n}P_X^{\otimes n}(x^n)\indic{g_n(f_n(x^n))\neq x^n}. \end{align*}\]
Question 1: for a fixed \(n\in\bbN\), what is the minimum \(R\) required to achieve \(P_e^{(n)}\leq \epsilon\)?
Question 2: as \(n\to\infty\), what is the minimum \(R\) that ensures that \(\lim_{n\to \infty} P_e^{(n)}=0\) \[ C_{\textsf{source}}\eqdef \inf\left\{R: \exists {(f_n,g_n)}_{n\geq 1} \textsf{ with }\lim_{n\to\infty}\frac{\log M_n}{n}\leq R \text{ and } \lim_{n\to\infty}P_e^{(n)}=0\right\} \]
For a discrete memoryless source \(p_X\), \(C_{\textsf{source}} = \bbH(X)\)
Consider a sequence of fixed length \((n,M_n)\) source codes \(\set{(f_n,g_n)}_{n\geq1}\) such that \[ \lim_{n\to\infty}\frac{\log M_n}{n}\leq R \text{ and } \lim_{n\to\infty}P_e^{(n)}=0 \] Then \(R\geq \bbH(X)\).
On average (over the random binning to create \(F\)), \[ \E[C]{P_e} \leq \P[P_{U}]{U\notin \calB_\gamma} + \frac{2^{\min(\gamma,\log_2\abs{\calU})}}{M}. \]
Approach 1: worst case analysis for \(\E{P_e}\leq \epsilon\)
\[ \log M = \log_2\card{\calU} + \log_2\frac{1}{\epsilon} \eqdef H_0(U) + \log_2\frac{1}{\epsilon} \]
Approach 2: smoothing
This offers partial answers to Question 1 if we substitute \(P_U\longleftarrow P_X^{\otimes n}\)
There exists a sequence of fixed length \((n,M_n)\) source codes \(\set{(f_n,g_n)}_{n\geq1}\) such that \[ \lim_{n\to\infty}\frac{\log M_n}{n}\leq \H{X} \text{ and } \lim_{n\to\infty}P_e^{(n)}=0 \]
A \((n,M_n)\) code for source coding a discrete memoryless source \(p_X\) with side information \(Y\) consists of:
The rate of the code \(R\eqdef \frac{\log_2 M_n}{n}\) (bits/source symbol)
The average probability of error
\[\begin{align*} P_e^{(n)}(\calC) \eqdef \P{\widehat{X}^n\neq X^n} \eqdef \sum_{(x^n,y^n)\in\calX^n\times\calY^n}P_{XY}^{\otimes n}(x^n,y^n)\indic{g_n(f_n(x^n),y^n)\neq x^n}. \end{align*}\]
For a discrete memoryless source \(P_{XY}\), \(C_{\textsf{source}} = \bbH(X|Y)\)
Consider a sequence of \((n,M_n)\) codes \(\set{(f_n,g_n)}_{n\geq1}\) such that \[ \lim_{n\to\infty}\frac{\log M_n}{n}\leq R \text{ and } \lim_{n\to\infty}P_e^{(n)}=0 \] Then \(R\geq \bbH(X|Y)\).
The achievability uses again random binning
Consider a source \(P_{UV}\), assume \(P_{U|V}(u,v)>0\) for all \((u,v)\) and set \(n=1\) for simplicity
Define the set \[ \calB_\gamma\eqdef\left\{(u,v)\in\calU\times\calV:\log\frac{1}{P_{U|V}(u|v)}\leq\gamma\right\}. \]
Encoding function \(f:\calU\to \set{1;M}\) created by assigning an index uniformly at random in \(\set{1;M}\) to each \(u\in\calU\)
Decoding function \(g:\intseq{1}{M}\times\calV:(m,v)\mapsto u^*\), where \(u^*=u\) if \(u\) is the unique sequence such that \((u,v)\in\calB_\gamma\) and \(f(u)=w\); otherwise, a random \(u\) is declared
On average (over the random binning to create \(F\)), \[ \E[C]{P_e} \leq \P[P_{U}]{U\notin \calB_\gamma} + \frac{2^{\min(\gamma,\log_2\abs{\calU})}}{M}. \]